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Abstract

Commercial greases for space applications usually fulfill the requirements imposed
by the severe conditions of use. The main requirement is their ability to create an EHL film,
boundary film, or both under speed, load and temperature conditions that the mechanisms
will operate. Three greases, all based on a multiply alkylated cyclopentane (Pennzanc®) base
oil, were studied. The thickeners were an n-octadecvlterephthalamate soap, a lithium soap,
and a urea derivative. A Four-Ball Tribometer and a Spiral Orbit Tribometer were employed
to evaluate the greases under ultrahigh vacuum. Results indicated that all three greases
vielded verv low wear rates and extended lifetimes. In addition, routine physical property
data is reported for each grease.

I- Introduction

Extended mission lifetimes and improvements to other spacecraft components, such
as electronics, batteries, and computers have placed increased burdens on space lubrication
systems [1]. Fluid lubrication, either as a liquid or a grease, is commonly used to extend
lifetimes and minimize wear, torque, and noise [2]. Because of these demands, the reliability
of spacecraft moving mechanical assemblies (MMAs) clearly depends on the lubricant
employed to cope with the increased lifetime. In order to assure that mission lifetimes will be
completed, accelerated testing has become mandatory and critical.

Although full scale life testing {3] or actual component testing [4, 5, 6] is desirable,
they are costly and time consuming. Various accelerated tests are available to evaluate the
torque, wear rate, friction coefficient or degradation rate of the lubricant. These include the
eccentric bearing test apparatus [7], the vacuum four-ball tribometer [8], and the spiral orbit
rolling contact tribometer (SOT) [9].

The eccentric bearing apparatus employs an actual bearing in which an intentional
misalignment is introduced to accelerate the degradation rate of the lubricant. Results with
this device have correlated well with actual space experience [10}].

The vacuum four ball tribometer consists of a rotating ball sliding against three
stationary balls that are immersed in a lubricant, either liquid or grease. The wear rate of the
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balls 1s calculated from the wear scars generated on the stationary balls. There is an inverse
correlation between wear rate and component lifetimes [11].

The spiral orbit tribometer (SOT), fully described in a former study [9], reproduces
the kinematics of an angular contact bearing. Data, such as the lubricated lifetime, friction
coefticient, contact resistance, and degradation products can be determined, monitored, and
analyzed. The relatve lifetimes of lubricants measured with the SOT have correlated well
with actual bearing lifc tests [4]. Previously limited to solid lubricants and liquid lubricants,
the SOT’s ability was recently extended to greases [12], which represent many of the
lubricants used in MMAs.

The objective of this work was to compare the wear rates of steel and the lubricated
lifetimes of three different vacuum greases based on Pennzane® using the vacuum four-ball
apparatus and the spiral orbit tribometer. Each contained a different thickener: an
n-octadecylterephthalamate soap, a lithium soap, and a urea derivative. In addition, the
terephthalamate based grease contained an antiwear additive and two antioxidants.

I1- Materials and Experimental Conditions
1- The Four-Ball Tribometer

This tribometer is used to test the lubricants’ ability to reduce wear of bearing
elements under high loads and operates with standard bearing balls. It is illustrated in
Figure 1. The specimens are made of AISI 440C stainless steel. Balls were grade 25, 9.5 mm
(3/8 inch) diameter. A 200 N load was applied through a pneumatic system (corresponding
to an initial Hertz stress of 2.7 GPa). The top plate rotated and the sliding generated a wear
scar on each stationary ball. The tests were conducted at a speed of 100 rpm. The test
automatically began when the pressure dropped below 1.3.107 Pa. The tests were performed
at room temperature. The wear scars were measured after each hour with a microscope and
the wear volume was calculated. This value is calculated considering the material worn has
the shape of a spherical zone. Wear volume was plotted as a function of sliding distance and
a wear rate calculated from a linear regression. At least four tests were run for each grease.

2- The Spiral Orbit Tribometer (SOT)

A Spiral Orbit Tribometer (SOT) simulates an angular contact bearing (Figure 2). A
12.7 mm (1/2 inch) ball rolled between a fixed plate and a rotary plate, running at 210 rpm.
The load, providing a mean Hertz stress of 1.5 GPa, was applied through the fixed plate.
The combination of the high load, the moderate speed, and of the small amount of lubricant
(approximately 50 Lg) allowed the system to operate in the boundary lubrication regime. The
ball was rolling and pivoting in a spiral and maintained in the orbit by the guide plate. The
force the ball exerted on the guide plate was used to determine the friction coefficient, since
the ball was sliding between the disks at this moment. The resistance of the contacts
between the ball and the plates was calculated from the voltage drop across the plates. The
evaluation of the greases was conducted at room temperature (= 23 °C), and under ultrahigh
vacuum (1.3.10° Pa). As the lubricant was tribologically stressed, it was degraded and
eventually consumed. Test conclusion was defined when a friction coefficient of 0.28 was
artained. Normalized lubricant lifetime (or inversely, its degradation rate) was then defined as
the number of orbits divided by the amount of lubricant in micrograms.
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3- Materials preparation

The greases are all based on a multiply alkvlated cyclopentane (Pennzane™) oil [13]. A
summary of the composition and physical properties is provided in Table 1. Rheolube® 2000
is a commonly used grease for space applications, containing both anti-wear and anti-oxidant
additives [14]. The grease MULTEMP 1C408 is manufactured with a lithium soap of 12-
hvdroxvstearate (8% by weight), while the MULTEMP 1C409 contains a thickener made
with a urea derivative (13% by weight). Neither MULTEMP grease contains any additives.

For the SOT tests, the greases were applied only on the ball by rolling it several times
between two elastic membranes made of polyethvlene. The small amount of grease
deposited on the ball (30-60 lg) was determined using a balance with an accuracy of £ 2 ug.
The edges of the wear tracks on the SOT plates, where some of the deposited lubricant was
pushed aside during the test, were analyzed with an infrared micro-spectrometer. [t
confirmed that both oil and thickener were present on the ball surtface.

All specimens were made of AISI 440C stainless steel. For tribological purposes, ball
and plate surfaces were polished to a roughness Ra of 0.05 Um. The parts were first rubbed
with an alumina slurry and rinsed under running deionized water. Then thev were
ultrasonically cleaned for ten minutes each first in a bath of hexane, followed by deionized
water. All dryving was done with filtered nitrogen. The procedure was completed by exposing
the specimens to UV /ozone for 15 minutes. More details can be found in reference [13]. In
the case of the Four-Ball Tribometer, the cleaning baths were hexane, acetone and methanol,
respectively (10 minutes each).

II1- Results
1- Surtace analysis
N-Ray Phoelectron Spectroscopy

An XPS analvsis of some ball surfaces was conducted for the greases based on the
lithium soap and urea derivative. The objective was to look for lithium and nitrogen traces
on the surfaces after the tests. In both cases, no traces of lithium nor of nitrogen were
detected. The ball surfaces had a slight brown coloration. The XPS spectra revealed the
presence of a thick carbon layer, created by degradation of the greases. The thickness of this
layer was great enough (> 40 A) to obscure the iron substrate peaks. Moreover, in the case
of lithium, the Li 1s peak is usually weak and interferes with one of the iron peaks. A similar
interference problem occurred with an EDAX analysis of the same balls. This implies that
the either Li-soap and urea derivative were completely consumed, or that the amounts left,
either in its virgin state or after degradation, were too small to be detected.

Infrared Spectroscopy

An infrared analysis was made inside and adjacent to the wear tracks on the disks
from the SOT (Figure 3). It confirmed the presence of organic degradation products (broad
and weak bands) in the track and of the original grease on the edges of the tracks (sharp and
strong bands) (Figure 4).
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Raman Spectroscopy

Raman spectroscopy was conducted mainly in the scrub area on the bottom plate.
The scrub (Figure 2) is the straight line portion of the orbit where the ball is sliding against
the plates when it strikes the guide plate. Lubricant degradation mainly takes place in this
area. FExamples of this area are shown in Figure 3. The appearance of the sliding area is
different between the greases. The degradation is more pronounced for the Rheolube® 2000
than for the other two greases. This was confirmed by the difficulty to detect a signature of
degraded lubricant from MULTEMP 1C409 and any signal in the case of MULTEMP
1C408. A comparison of the Raman spectra for all the greases is presented in Figure 5. The
spectra have a high fluorescence background. The ones for Rheolube® and MULTEMP
1C409 were obtained under the same conditions. No significant spectral characteristics of
degradation products were detected with MULTEMP 1C408 after several attempts in
different locations of the scrub. Hence, no comparable spectra were obtained on this grease.

Two broad peaks are evident with Rheolube® 2000, one centered near 1580 cm™ and
a smaller peak around 1360 cm™. These are related to the so called “G” and “D” peaks
assigned to amorphous carbon [16], the final stage of the lubricant degradation. This has
been observed in other friction polymers [17] and in an in-situ Raman study [18].

2- Wear rates

The wear rates of the steel for each grease (based on four tests) appear in Figure 6
along with reference data for Pennzane® 2001A base oil and formulated Pennzane™ 2001, As
can be seen, all greases vield low wear rates compared to fluorinated lubricants [8, 11]. These
rates are only slightly higher than the formulated oil and base oil.

3- Friction coefficient and Lifetime in the SOT

At least four tests were conducted for each grease. All of them have large normalized
lifeumes (number of orbits per microgram of lubricant) compared to fluorinated lubricants
[9]. Results are shown in Figure 7. However, the lifetime of Rheolube® 2000 is several times
greater than the MULTEMP 1C408 and 1C409 ones. The initial friction coefficients
(Figure 8) are low in most cases (0.09-0.10), except for the MULTEMP 1C408 (0.12), but
this value was stable during most of the test. For comparison, the initial friction coefficient
for Pennzane® base oil is about 0.08.

The friction traces of the greases could be divided into two different behaviors. The
first one is the grease with a urea-derivative thickener. The friction coefficient of this grease
increased progressively and slowly until failure. The second one included the Li-soap and the
Rheolube® 2000 greases. Both of these have also shown a progressive failure, but the
increase in friction began at approximately half the lifetime. Thus, these two greases have
shown a precursor of the failure, indicated by the arrows in Figure 8.

IV- Discussion
In general, wear rates from the vacuum four-ball tests have correlated well with the

spiral orbit tribometer and full-scale bearing tests. That is, high wear rates of the steel are
associated with short relatve lifetimes of the lubricant (high degradation rates) and short
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bearing lives. Howcever, in this study, all greases yielded similar and low wear rates

(= 2.0.10™"" mm’/mm) compared to fluorinated lubricants [8, 11]. Fluorinated lubricants
have generally vielded steel wear rates, at least one order of magnitude higher.

On the other hand, the relative lifetimes from the SOT show a clear distinction. The
thickener made with sodium n-octadecylterephthalamate soap has yvielded the greatest
lifetime (more than 15000 orbits/Ug). The greases evaluated use the same basc oil
Therefore, the ability of these greases to lubricate a contact mainly depends on the ability of
the grease to release the oil it contains. The oil is usually enclosed in a three dimensional
network made by the thickener, the reaction to create the thickener sometimes taking
directly place within the oil. So the oil is released when the grease is “squeezed” by the
passage of the ball. This aspect was accurately detailed in reterence [19]. Nevertheless, in
spite of the evidence of the presence of both the oil and the thickener on the grease applied
to the ball, it cannot be determined that the weight percentages are the ones of the original
lubricant. It is also clear, from the Raman analysis, that the degradation of the MULTEMP
greases has left very little chemical products. The only parameters that change are the
presence of additives, the thickener nature or its weight percentage, and, as a consequence,
the nature of the interactions between it and the oil.

The additives in Rheolube® 2000 generally have higher vapor pressures compared to
the base oil. Therefore, cven though “trapped” thev are within the structure of the grease,
thev are not designed to stand ultrahigh vacuum.

The SOT operated with only 30 to 60 g of grease. Assuming the lubricant is evenly
distributed over the surface of the ball, the greasc thickness is around 15 nm, while the
surface roughness is Ra=0.05 um. Considering the Stribeck criteria (lambda ratio, lubricant
thickness/roughness), the tests were operated in the boundary regime. A resistance equal to
zero confirmed this when the tests started, indicating direct contact between the plates and
the ball surface. Neither inlet nor outlet were created and the Hamrock and Dowson model
cannot be applied to calculate the film thickness. The only supply of lubricant was the
initially charge present on the ball surface. Thus, it is clear that the grease composition and
its structure will determine if the lubricant will be able to last. According to these results, the
method that the small amount of oil present within the grease structure is released changed
between the three lubricants evaluated. Also, the thickeners of the MULTENMP greases are
not as capable as the one of the Rheolube® 2000 to cope with the severity of the conditions.
This is consistent with the worked penetration data of the greases (Table 1). This test gives
the depth of penetration of a cone falling in grease under defined conditions [19]. The
MULTEMP 1C408 has the lowest one (Table 1), but also with the images and the
spectroscopic analysis (Figures 3, 4 and 5) the grease leaving few residues. Grease 1C408 (Li-
soap) and 1C409 (urca derivative) have not left residues on the wear tracks. The degradation
ot the MULTEMP thickeners occured and lead to more volatle products. This would
explain the shorter litetimes and the lower amount of residue on the wear track.

Moreover, a change in the friction coefficient trace appeared in the case of grease
MULTEMP 1C408 and Rheolube® 2000 at about half of the lifetime (see Figure 8).
Therefore, we have a precursor of the failure, as observed before [12]. That implies that the
degradation process of the lubricant (oil and thickener) is taking place later with the greases
based on the ester soaps. However, the grease with a urea-derivative thickener has shown a
constant increase in the fricuon coefficient, as did the neat oil. The consumption of the
lubricant started immediately with the grease based on the urea derivadve. The behavior of
the urea grease can also be linked to the ability of the thickener to release the lubricant
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within the contact. Thus, since the behavior of the MULTEMP 1C409 (urea derivative) was
very close to that of the neat oil, we can assume that this grease quickly released the main
part of the oil it contained, although the thickener percentage is higher, while the Rheolube®
2000 and the MULTEMP 1C408 (Li soap) greases released it more progressively. This could
show that the interaction between the soap and the oil is stronger with the esters soaps.

It is also interesting to note the way the lubricant detected on the edge of the wear
track behaves. The grease is supposed to provide oil from the edge to the tracks. But no oil
was detected on the track after the conclusion of the test. It appears that the lubricant
pushed out of the track is unavailable for the duration of the test. This aspect would
reinforce the idea that a lubricant reservoir would still be necessary.

V- Conclusion

The greases based on Pennzane™ oil have demonstrated a good ability to operate
under severe conditions. The accelerated tests have shown that the grease based on the
sodium n-octadecylterephthalamate soap has a greater lifetime than the ones with a lithium
or a urca detivative thickeners. All these greases are able to provide good surface protection
against wear and provide low friction coefficients. Without structural and rheological data,
the effect of different interactions between the thickener and the oil to explain their
tribological behaviors could not yet be confirmed. An increase in the thickener mass
percentage of the Li-grease could improve its lifetime.

The Spiral Orbit Tribometer, an angular contact bearing simulator, has now clearly
confirmed its ability to evaluate and optimize greases. It would also be able to establish a
relationship between the amount of lubricant used and the lifetime of a mechanism.
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GREASES

Rheolube® 2000 MULTEMP 1C408 | MULTEMP 1C409
Appearance light brown light brown light brown
Additive(s) : phzshl?gi;:’eznp?;g:l and none none
Thickener soap of sodium soap of lithium

n-octadecvlterephthalamate

12-hydroxy stearate

urea derivative

Mass percentage

of thickener =15 =8 ~13
Dropping point (°C) > 260 209 360
Worked pefxetratlon, 276 . 00
60 strikes
Oil separation -
(100 °C, 24 h) (mass %) 33 1.1 1.7
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Table 1: Greases compositions and properties
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